
A class library for Unix

...and software running on it

or

how to turn a bunch of buzzwords into a useful
program

Meta
● this talk is best consumed with knowledge of: object

oriented programming, Unix

● it is about work in progress, nothing you can expect to
be important for your job tomorrow

● Unix hackers might also find some techniques
interesting

● you are invited to participate under the term of the GPL

● now lets move on to the facts

Overview

● It is for Unix systems what C++ is for C

● it introduces explicit types to Unix

● it reduces the complexity for the user / administrator

● it is a design step further than webmin, more generic

● it is compatible to Unix, a method can be used
anywhere a command execution is now used

● you get all the benefits of components, abstract
interfaces, polymorphism, encapsulation and a more
functional style

Why Object Orientation?
● The goal is to classify the diversity of software

● Abstract classes can help to integrate a wide variety of
programs

● Classification can be used as a basis for documenting
software, so even documentation can be shared
between programs

● Abstractions help reduce the development time and
they also reduce the time necessary to learn which
functionality a program has and how to use it

It is not

● a programming language (you can use any language)

● kernel code (except for a virtual file system module)

● very efficient (but shell scripts aren't either)

Problems addressed

● Unix has a great variety of software that is
independently developed and so is very diverse

● Standardization stops before we come to configuration
files

● Scripts often address a particular software package and
not a class of similar packages

● There is no general GUI concept for Unix configuration
and the GUIs (webmin, gnome-system-tools) are not
easily scriptable

State of the art I

● There are already lots of implicit classes

– packages/ports (install, remove)

– services (start, stop, restart, reload)

– kernel modules (load, unload)

State of the art II

● Many ways to name the same thing

– Apache: BindAddress/Port

– wu-ftpd: -p

– squid: http_port

– inetd: first column of an entry

– xinetd: after the service keyword

– tcpserver: second non-option argument

● Nice to play memory games

● Especially ugly to automate

State of the art III

● Debian has update-inetd which encapsulates inetd.conf
or xinetd.conf behind the same interface and
update-rc.d which does the same for different init
configuration styles

● Gnome system tools have backends that abstract
system objects (for example grub and lilo)

● debian menus, which are used by a variety of desktop
environments

Benefits for advanced users

● makes administrative tasks more portable

● no need to write parsers, just get the values from the
objects

● gives Unix a more functional character and a more
programming character generally

Benefits for end users

● Less documentation to read to gain access to more
programs

● easier to compare different programs

● easier to switch from one program or component to
another

● objects and classes are closer to natural thinking

● less information to keep in mind

● end users normally play different memory games

Benefits for the curious

● Open object model which is easier to inspect than that
of a real programming language

● Learn about Unix software in a well structured format

● Does not focus on depth, but on covering a wide range

● Maybe it can be transformed into some sort of
wikipedia for Unix software

Benefits for developers

● writing methods can be as simple as writing a shell
script

● write code for a consistent framework

● use your favourite programming language

Basic Architecture

● Programming language independence

● Text oriented inter-method communication

● argv – style method invocation

● 3 tiers (Storage, Object Model, Frontends)

● Backward compatible with existing configuration files

● Scriptable

● Graphical user interface(s)

● Comfort before efficiency

Implementation status

● Alpha status

● Not a prototype anymore

● Brings some application independent classes
(Scheduler, Virtual File System, ...)

● Language bindings: perl, c++, javascript, bourne shell

● Backends: file system, original configuration files via
virtual RAM file system

● Frontends: command line, HTML, XML

● 30k lines of C++, 20k lines shell and perl

Anatomy of a class

● A class is a list of key/value mappings

– inherit: a list of strings naming superclasses

– methods: a list of files of method implementations

– methdsc, varidsc: documentation for methods and
variables

– clsdesc: the class documentation

– methsrc: method source files

– include: code shared by a number of methods

– members, bmember, fmember: variables

Storing classes in the filesystem

● a directory can be made into a class by creating some
files that describe the class

● all object attributes begin with a dot and are either files
(.inherit, .members) or directories (.methods, .methsrc, .
fmember)

● directories may contain other directories, there is one
subdirectory for each programming language in the .
methsrc and .include directories for example

Using a class

● A class is either used when a method is called on it or it
is in the list of superclasses of an object that is used

● When a class is accessed, the .inherit file is read to
obtain a list of superclasses

● When a method is called, all superclasses methods
directories are scanned for a matching implementation

● That is a late binding that uses the file system at
runtime (or generally the currently used backend)

Using classes from the shell

● in the bash PROMPT_COMMAND is set to point to a
program that tries to interpret the current directory as a
class and sets the shell environment accordingly

● PATH is modified to include all .methods directories of
all superclasses

● after that the method at-enter is called in which other
modifications can be made (for example to install
completions for methods that are now in scope)

● a method can be invoked like a command as it is in the
path now

Using classes from other
languages

● There is a C++ class that is (for historic reasons) called
Environment that has all information about an object

● There is a C++ class called MethodFinder which is
instanciated with an Environment object and has a
method method() that is used to call a method

● Bindings exist for scripting languages to get access to
the above classes

The execution environment of a
method

● Very similar to a unix command

● stdin, stdout, stderr streams

● argc/argv arguments

● an integer return value

● a method can either be in a process of its own or
dynamically loaded into the running process

● so one writes little programs where stdin/stdout may be
string streams and which do not call exit(2) to terminate
and which must free all memory they acquire
(comparable to mod_perl vs. CGIs)

Examples
● cd /tmp; create -i foo bar; destroy bar

– creates the object bar in /tmp that inherits from foo,
then deletes it

● @ universal list-methods [-r]

– lists all methods (one per line) that are members of
the universal class [and superclasses]

● cdo servers/apache; restart

– change object to the apache server and call method
restart

● @ servers/apache restart

– like above

More examples

● @ /etc/fstab/0 device

– print the device of the zeroth line of the fstab

● @ ~/.mozilla/cache clean

– delete the browser cache

● for s in $(@ services list); do @ $s reload; done

– tell every background daemon to reload the
configuration

● @ Package/zsh install

– install a software package

Reusing interfaces

● class: collection, method: count

● @ /etc/fstab count

● @ /etc/inetd count

● @ User count

● @ Network/Interface count

● @ Network/Route/Ipv4 count

● @ User/root/Session count

Reusing interfaces II

● class: cleanable, method: clean

● @ Apt/unstable/cache clean

● @ ~/.firefox/cache clean

● @ Server/squid/cache clean

● @ Server/apache/error-log clean

● @ Cache/universal clean

Other uses

● @ packetfilter allow Server/ftpd

● cdo Server/apache

– create -i Logger/syslog error-log

– create -i syslog error-log

– create -i Logger/readproctitle error-log

– create -i Logger/file error-log

– create -i Logger/my-custom-logger error-log

– destroy error-log

– disable error-log

One step beyond

● @ Meta/class implements [-r] cleanable

– list all classes that implement the cleanable interface
 [including subclasses]

● @ Meta/class search server network time

– search for all classes that have above strings
somewhere in their documentation (e.g. an ntp
server)

● @ Server save-state; @ Server restore-state

– save and restore the volatile state of all objects
under Server/* (e.g. which of them is running)

Things you may find useful

● C++ virtual file system framework

● C++ text template processing framework

● C++ User space scheduler/event framework

● C++ compile time class configuration framework

● perl bindings to iostreams and stl containers

Work Todo

● Implementing parsers and configuration file generators

● Writing more language bindings

● Maybe a standalone GUI

● Writing documentation

● Classifying all the software out there

● Porting away from (debian) linux

Research/Advanced Work Todo

● Generic interface to access scripting language
interpreters from C++ (the opposite direction of what
SWIG does)

● Style of the presentation of the object model to the user
(the GUI)

● Identifying existing abstractions and designing classes

● Implement advanced programming concept (multiple
dispatch, ...)

