A class library for Unix

...and software running on it
or

how to turn a bunch of buzzwords into a useful
program

Meta

this talk is best consumed with knowledge of: object
oriented programming, Unix

It Is about work In progress, nothing you can expect to
be important for your job tomorrow

Unix hackers might also find some techniques
Interesting

you are invited to participate under the term of the GPL

now lets move on to the facts

Overview

It is for Unix systems what C++ is for C

it introduces explicit types to Unix

It reduces the complexity for the user / administrator
It Is a design step further than webmin, more generic

It Is compatible to Unix, a method can be used
anywhere a command execution Is how used

you get all the benefits of components, abstract
interfaces, polymorphism, encapsulation and a more
functional style

Why Object Orientation?

The goal is to classify the diversity of software

Abstract classes can help to integrate a wide variety of
programs

Classification can be used as a basis for documenting
software, so even documentation can be shared
between programs

Abstractions help reduce the development time and
they also reduce the time necessary to learn which
functionality a program has and how to use it

It IS not

* a programming language (you can use any language)
* kernel code (except for a virtual file system module)

* very efficient (but shell scripts aren't either)

Problems addressed

Unix has a great variety of software that is
Independently developed and so is very diverse

Standardization stops before we come to configuration
files

Scripts often address a particular software package and
not a class of similar packages

There is no general GUI concept for Unix configuration
and the GUIs (webmin, gnome-system-tools) are not
easily scriptable

State of the art |

* There are already lots of implicit classes
- packages/ports (install, remove)
- services (start, stop, restart, reload)

- kernel modules (load, unload)

State of the art |l

* Many ways to name the same thing

- Apache: BindAddress/Port

- wu-ftpd: -p

- squid: http_port

- Inetd: first column of an entry

- Xinetd: after the service keyword

- tcpserver: second non-option argument

* Nice to play memory games

* Especially ugly to automate

State of the art |l

 Debian has update-inetd which encapsulates inetd.conf
or xinetd.conf behind the same interface and
update-rc.d which does the same for different init
configuration styles

* Gnome system tools have backends that abstract
system objects (for example grub and lilo)

* debian menus, which are used by a variety of desktop
environments

Benefits for advanced users

makes administrative tasks more portable

no need to write parsers, just get the values from the
objects

gives Unix a more functional character and a more
programming character generally

Benefits for end users

Less documentation to read to gain access to more
programs

easier to compare different programs

easier to switch from one program or component to
another

objects and classes are closer to natural thinking
less information to keep in mind

end users normally play different memory games

Benefits for the curious

Open object model which is easier to inspect than that
of a real programming language

Learn about Unix software in a well structured format
Does not focus on depth, but on covering a wide range

Maybe it can be transformed into some sort of
wikipedia for Unix software

Benefits for developers

e writing methods can be as simple as writing a shell
script

e write code for a consistent framework

* use your favourite programming language

Basic Architecture

Programming language independence

Text oriented inter-method communication

argv — style method invocation

3 tiers (Storage, Object Model, Frontends)

Backward compatible with existing configuration files
Scriptable

Graphical user interface(s)

Comfort before efficiency

Implementation status

Alpha status
Not a prototype anymore

Brings some application independent classes
(Scheduler, Virtual File System, ...)

Language bindings: perl, c++, javascript, bourne shell

Backends: file system, original configuration files via
virtual RAM file system

Frontends: command line, HTML, XML
30k lines of C++, 20k lines shell and perl

Anatomy of a class

 Aclassis a list of key/value mappings

Inherit: a list of strings naming superclasses
methods: a list of files of method implementations

methdsc, varidsc: documentation for methods and
variables

clsdesc: the class documentation
methsrc: method source files
Include: code shared by a number of methods

members, bmember, fmember: variables

Storing classes In the filesystem

e a directory can be made into a class by creating some
files that describe the class

* all object attributes begin with a dot and are either files
(.inherit, .members) or directories (.methods, .methsrc, .
fmember)

e directories may contain other directories, there is one
subdirectory for each programming language in the .
methsrc and .include directories for example

Using a class

A class Is either used when a method is called on it or it
IS In the list of superclasses of an object that is used

When a class Is accessed, the .inherit file is read to
obtain a list of superclasses

When a method is called, all superclasses methods
directories are scanned for a matching implementation

That is a late binding that uses the file system at
runtime (or generally the currently used backend)

Using classes from the shell

In the bash PROMPT_COMMAND is set to point to a
program that tries to interpret the current directory as a
class and sets the shell environment accordingly

PATH Is modified to include all .methods directories of
all superclasses

after that the method at-enter is called in which other
modifications can be made (for example to install
completions for methods that are now in scope)

a method can be invoked like a command as it is in the
path now

Using classes from other
languages

* There is a C++ class that is (for historic reasons) called
Environment that has all information about an object

* There is a C++ class called MethodFinder which is
Instanciated with an Environment object and has a
method method() that is used to call a method

* Bindings exist for scripting languages to get access to
the above classes

The execution environment of a
method

Very similar to a unix command
stdin, stdout, stderr streams
argc/argv arguments

an integer return value

a method can either be in a process of its own or
dynamically loaded into the running process

sSo one writes little programs where stdin/stdout may be
string streams and which do not call exit(2) to terminate
and which must free all memory they acquire
(comparable to mod_perl vs. CGls)

Examples

cd /tmp; create -i foo bar; destroy bar

- creates the object bar in /tmp that inherits from foo,
then deletes it

@ universal list-methods [-1]

- lists all methods (one per line) that are members of
the universal class [and superclasses |

cdo servers/apache; restart

- change object to the apache server and call method
restart

@ servers/apache restart

- like above

More examples

@ /etc/fstab/O device

- print the device of the zeroth line of the fstab
@ ~/.mozilla/cache clean
— delete the browser cache

for s in $(@ services list); do @ $s reload; done

- tell every background daemon to reload the
configuration

@ Package/zsh install

- Install a software package

Reusing interfaces

class: collection, method: count
@ /etc/fstab count

@ /etc/inetd count

@ User count

@ Network/Interface count

@ Network/Route/lpv4 count

@ User/root/Session count

Reusing interfaces |l

class: cleanable, method: clean
@ Apt/unstable/cache clean

@ ~/.firefox/cache clean

@ Server/squid/cache clean

@ Server/apache/error-log clean

@ Cache/universal clean

Other uses

* @ packetfilter allow Server/ftpd
* cdo Server/apache

- create -1 Logger/syslog error-log

- create -1 syslog error-log

- create -1 Logger/readproctitle error-log

- create -1 Logger/file error-log

- create -1 Logger/my-custom-logger error-log
- destroy error-log

- disable error-log

One step beyond

e @ Meta/class implements [-r] cleanable

- list all classes that implement the cleanable interface
[including subclasses]

e @ Meta/class search server network time

- search for all classes that have above strings
somewhere In their documentation (e.g. an ntp
server)

e @ Server save-state: @ Server restore-state

- save and restore the volatile state of all objects
under Server/* (e.g. which of them is running)

Things you may find useful

C++ virtual file system framework

C++ text template processing framework

C++ User space scheduler/event framework
C++ compile time class configuration framework

perl bindings to iostreams and stl containers

Work Todo

Implementing parsers and configuration file generators
Writing more language bindings

Maybe a standalone GUI

Writing documentation

Classifying all the software out there

Porting away from (debian) linux

Research/Advanced Work Todo

Generic interface to access scripting language
Interpreters from C++ (the opposite direction of what
SWIG does)

Style of the presentation of the object model to the user
(the GUI)

ldentifying existing abstractions and designing classes

Implement advanced programming concept (multiple
dispatch, ...)

